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We propose a method to find the community structure in complex networks based on an extremal optimi-
zation of the value of modularity. The method outperforms the optimal modularity found by the existing
algorithms in the literature giving a better understanding of the community structure. We present the results of
the algorithm for computer-simulated and real networks and compare them with other approaches. The effi-
ciency and accuracy of the method make it feasible to be used for the accurate identification of community
structure in large complex networks.
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The description of the structure of complex networks has
been one focus of attention of the physicists’ community in
recent years. The levels of description range from the micro-
scopic �degree, clustering coefficient, centrality measures,
etc., of individual nodes� to the macroscopic description in
terms of statistical properties of the whole network �degree
distribution, total clustering coefficient, degree-degree corre-
lations, etc.� �1–4�. Between these two extremes there is a
“mesoscopic” description of networks that tries to explain its
community structure. The general notion of community
structure in complex networks was first pointed out in the
physics literature by Girvan and Newman �5�, and refers to
the fact that nodes in many real networks appear to group in
subgraphs in which the density of internal connections is
larger than the connections with the rest of the nodes in the
network.

The community structure has been empirically found in
many real technological, biological, and social networks
�6–12� and its emergence seems to be at the heart of the
network formation process �13�.

The existing methods intended to devise the community
structure in complex networks have been recently reviewed
in �10�. All these methods require a definition of community
that imposes the limit up to which a group should be consid-
ered a community. However, the concept of community itself
is qualitative: nodes must be more connected within their
community than with the rest of the network, and its quanti-
fication is still a subject of debate. Some quantitative defini-
tions that came from sociology have been used in recent
studies �14�, but in general, the physics community has
widely accepted a measure for the community structure
based on the concept of modularity Q introduced by New-
man and Girvan �15�,

Q = �
r

�err − ar
2� �1�

where err are the fraction of links that connect two nodes
inside the community r, ar the fraction of links that have one
or both vertices inside of the community r, and the sum
extends to all communities r in a given network. Note that
this measure provides a way to determine if a certain meso-
scopic description of the graph in terms of communities is

more or less accurate. The larger the values of Q the more
accurate is a partition into communities.

The search for the optimal �largest� modularity value
seems to be a NP-hard problem due to the fact that the space
of possible partitions grows faster than any power of the
system size. For this reason, a heuristic search strategy is
mandatory to restrict the search space while preserving the
optimization goal �16,17�. Indeed, it is possible to relate the
current optimization problem for Q with classical problems
in statistical physics, e.g., the spin-glass problem of finding
the ground-state energy �18�, or the ground-state energy of a
Potts model �27,30�, where algorithms inspired in natural
optimization processes such as simulated annealing �19� and
genetic algorithms �20� have been successfully used.

In this Brief Report, we propose a divisive algorithm that
optimizes the modularity Q using a heuristic search based on
the extremal optimization �EO� algorithm proposed by Boet-
tcher and Percus �21,22�. This algorithm is inspired in turn
by the evolution model of Bak and Sneppen �23�, and basi-
cally operates by optimizing a global variable by improving
extremal local variables that involve coevolutionary ava-
lanches. The performance of EO algorithms has been shown
to overcome the efficiency of classical simulated annealing
and genetic algorithms providing competitive accuracy
�24,25�.

In our case, the global variable to optimize is Q as defined
in Eq. �1�. Thus, the definition of the local variables used in
the extremal optimization problem should be related to the
contribution of individual nodes i to the summation in Eq.
�1� given a certain partition into communities,

qi = �r�i� − kiar�i�, �2�

where �r�i� is the number of links that a node i belonging to
a community r has with nodes in the same community, and ki
is the degree of node i. Note that Q= �1/2L��iqi where i
refers to all nodes in the network given a certain partition
into communities and L is the total number of links in the
network. Equation �2� provides a measure that depends on
the node degree, and its normalization involve all the links in
the network after summation. Rescaling the local variable qi
by the degree of node i we obtain a proper definition for the
contribution of node i to the modularity, relative to its own
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degree and normalized in the interval �−1,1�.

�i =
qi

ki
=

�r�i�

ki
− ar�i�. �3�

Keeping in mind this definition of �i we can compare the
relative contributions of individual nodes to the community
structure. We will consider �i as the local variable involved
in the extremal optimization process that characterizes an
individual node; from now on we will refer to �i as the
fitness of node i using the common jargon in extremal opti-
mization problems.

The heuristic search we propose to find the optimal modu-
larity value evolves as follows.

�1� Initially, we split the nodes of the whole graph into
two random partitions having the same number of nodes in
each one. This splitting creates an initial community divi-
sion, where communities are understood as connected com-
ponents in each partition.

�2� At each time step, the system self-organizes by mov-
ing the node with the lower fitness �extremal� from one par-
tition to the other. In principle, each movement implies the
recalculation of the fitness of many nodes because the right-
hand side of Eq. �3� involves the pseudoglobal magnitude
ar�i�.

�3� The process is repeated until an “optimal state” with a
maximum value of Q is reached. After that, we delete all the
links between both partitions and proceed recursively with
every resultant connected component. The process finishes
when the modularity Q cannot be improved.1

Note that this process is not a bipartitioning of the graph
as known in computer science �22�, because the number of
nodes in each partition is dependent on the evolution process
and not restricted to be the same at the end of the process;
and, more importantly, each partition could contain different
connected components �communities� that when the parti-
tions are disconnected result in several subgraphs.

Let us illustrate the above-mentioned heuristics in a
simple case. We will apply it to the well-known Zachary
karate club network �26�. Initially we split the nodes in two
random partitions �see Fig. 1 left�. Note that the number of
initial communities �connected components in each partition�
in this case is five �see Fig. 1 right�. After that, the self-

organization process starts: the node with the “worst fitness”
is selected and moved from its partition to the other partition,
and this movement provokes an avalanche of changes in the
fitness of the rest of nodes. We calculate the new value for
the modularity Q, and again repeat the process until no
changes could improve it �see Fig. 2�.

The application of the algorithm to the Zachary network
provides the optimal modularity value after three recursive
iterations. The network is decomposed in four communities
and the value for the modularity is 0.419, greater than the
value 0.381 reported by Newman �16�, the value 0.406 re-
ported by Reichardt et al. �27�, and the value 0.412 reported
by Donetti et al. �28� using different optimization methods.

The extremal optimization approach presented here has
several technical implementation details that are relevant for
our purposes. In the original EO algorithm, the node selected
is always the node with the worst � j value. This is a deter-
ministic and fast way to solve the problem, but it presents
some drawbacks: the final result strongly depends on the
initialization and there is no possibility to escape from local
maxima. Instead, we use a probabilistic selection called
�-EO �21�, in which the nodes are ranked according to their
fitness values, and then the node of rank q is selected accord-
ing to the following probability distribution:

P�q� � q−�. �4�

This solution is less sensitive to different initializations
and allows escape from local maxima. The exponent � has
been tuned around the optimal values obtained for random
networks of size N that approach the scaling ��1+1/ ln�N�
�21�. The use of this technique also implies the determination
of the number of self-organization steps �N needed to decide
that the maximum value has little chance to be improved. In
practice, we keep track at each step of the last maximum
value obtained for Q; if this maximum is not improved in �N
steps we stop the search. Usually � is empirically determined
by balancing accuracy and efficiency in the algorithm; we
use �=1 allowing as many steps as nodes to improve the
current maximum value of Q. The computational cost in-
volved in the whole process is O�N2 ln2 N� where the factor
N ln N is the cost associated with the ranking process; how-
ever, it can be substantially reduced using heap data struc-
tures �29� for the ranking selection process up to O�N�. The
total cost of the algorithm can then be improved up to
O�N2 ln N�.

To test the performance of the algorithm we use first
computer-generated graphs with a known community struc-
ture �5�. These graphs have 128 vertices grouped in four
communities of 32 vertices. Each vertex has on average zin

1The value of Q always refers to the whole network, i.e., it is the
sum over all the communities. At a certain moment more subdivi-
sions into communities will necessarily decrease Q because the
limit of decomposition is one community per node, whose value of
Q is negative.

FIG. 1. �Color online� Left: Random initial-
ization of the Zachary network into two parti-
tions, circles �red� and squares �green�. Right:
Five different communities identified as con-
nected components in each partition. Each sym-
bol �color� defines a different connected
component.
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edges to vertices in the same community and zout edges to
vertices in other communities, keeping an average degree
zin+zout=16. We generate several graphs using zout values
between 0 and 10, and compare the results of our algorithm
with those obtained using the heuristics proposed by New-
man �16�. This shows the capabilities of each algorithm in
identifying the communities when these are more fuzzy in-
side the whole network. Using the Girvan-Newman algo-
rithm, which is the reference algorithm for community iden-
tification, the communities are well detected until values of
zout=6. In contrast, our algorithm detects the communities up
to zout=8, where the community structure still persists but is
much more difficult to reveal �see Fig. 3�. In this particular
case 50% of the links are within the community and 50% are
links with nodes outside the community. This result, which
could seem contradictory, is not. Note that the 50% of links
with nodes outside the community are, in average, equally
distributed among the rest of the communities; their contri-
bution to the definition of community is reduced by the num-
ber of communities in the rest of the network, in our case 3.
For this reason it is expected to find community structure
even in these cases.

For values higher than 8, the average maximum modular-
ity rapidly approaches the limit Q=0.208 �see inset of Fig.
3�, the expected modularity for a random network with the
same number of links and nodes, as has been shown in �30�.

We have also analyzed the community structure of several
real networks: the jazz musicians network �31�, a university
e-mail network �13�, the C. elegans metabolic network �32�,
a network of users of the pretty good privacy �PGP� algo-
rithm for secure information transactions �33�, and finally the
relations between authors that shared a paper in cond-mat
�34�.

In Table I we present the results for the maximum modu-
larity achieved by our algorithm compared to the modularity

obtained using �16�. The difference in maximum modularity
is up to 15% depending on the network considered. These
differences result in a best determination of the unknown
community structure of the whole network. The partition into
communities is clearly different for large networks, as the
different number of communities found using the two algo-
rithms shows.

Note that since the core of the algorithm is stochastic,
different runs could yield in principle different partitions. We
have performed 100 runs of the algorithm for the e-mail
network and for a random network with the same number of
links and nodes to check the consistency of the proposed

FIG. 2. �Color online� Top: Network after
edge removal at each recursive cut. Bottom: Evo-
lution of the Q value at each step of the adapta-
tion process. Separation bars indicate recursive
divisions of the graph performed at maximum Q.

FIG. 3. Fraction of nodes correctly classified using computer-
generated graphs described in the text. Each point is an average
over 100 different networks. The fraction of nodes correctly classi-
fied we represent follows the definition proposed by Newman in
�16�. Inset: Average of the maximum modularity obtained at each
point.

BRIEF REPORTS PHYSICAL REVIEW E 72, 027104 �2005�

027104-3



method. In Fig. 4 we present the results for the fraction of
times two nodes are classified in the same partition. The
community structure is clearly revealed for the e-mail net-
work while for the random network this structure is nonex-
istent. Recently, Guimerà and Amaral obtained similar re-
sults by applying simulated annealing to find the community
structure in the context of metabolic networks �35�.

Summarizing, we have presented an extremal-
optimization-based algorithm that optimizes the modularity
and allows an accurate identification of community structure

in complex networks. The results outperform all previous
algorithms we are aware of in the literature.
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TABLE I. Maximum modularity obtained using the algorithm
�16� QN and the extremal optimization algorithm QEO for different
complex networks. Also included is the number of communities
found at the configuration with maximum modularity.

Network Size QN No. comsN QEO No. comsEO

Zachary 34 0.3810 2 0.4188 4

Jazz 198 0.4379 4 0.4452 5

C. elegans 453 0.4001 10 0.4342 12

E-mail 1133 0.4796 13 0.5738 15

PGP 10680 0.7329 80 0.8459 365

Cond-Mat 27519 0.6683 302 0.6790 647
FIG. 4. Fraction of nodes classified in the same partition over

100 realizations of the algorithm. The color of the position �i , j�
corresponds to the fraction of times that nodes i and j belong to the
same partition.
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